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We present a renormalization group theory in polymer conformation space to describe randomly
branched polymers in which monomers interact with each other through the excluded volume interac-
tion. We make a perturbation expansion for the mean square radius of gyration of randomly branched
polymers with annealed structures and identify the appropriate scaling variable. We further perform a
renormalization group analysis that results in the € expansion for the critical exponents of the radius of
gyration v=1+¢€/36 and of the number of configurations = —e/12, which are consistent with the re-
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sults of an earlier theory.

PACS number(s): 61.25.Hq, 61.41.+e, 64.60.Ak

I. INTRODUCTION

The theoretical description of the properties of poly-
mer solutions with the excluded volume interaction is
both fundamentally important and enormously challeng-
ing. For linear polymers, the renormalization group
theory has been successful in understanding the essential
universal characteristics of polymer solutions when the
excluded volume interaction is present; there are a num-
ber of books that review various aspects of this subject
[1-3]. In contrast, less is known about branched poly-
mers [4-6], although deep connections are thought to ex-
ist between the problem and other areas of statistical
mechanics, such as lattice animals [7] and Ising magnetic
systems [8,9]. In view of a renewed interest in the subject
[10-15], it is desirable to examine the configurational
properties of branched polymers. In particular, random-
ly branched polymers with annealed branching points are
studied in this paper by using an approach of
conformational-space  renormalization group (RGQG)
theory.

Presently, three approaches that deal with the problem
of calculating conformation properties of branched poly-
mers are used in the literature. The first one is due to
Zimm and Stockmayer [4], who formulated the problem
by introducing the combinatorial mean-field analysis.
The mean-field value for the critical exponent v of the
mean-square radius of gyration was determined to be +.
It is difficult, however, to generalize this approach to in-
clude the effect of the excluded volume interaction be-
tween monomers. The second approach is the one pro-
posed by Lubensky and Isaacson [7], who studied a mod-
el that maps the lattice animal problem to a magnetic
Hamiltonian functional in terms of an nm-component
field variable where the limits n —0 and m —0 must be
taken. They pointed out that the critical dimensionality
for the problem is D, =8 and used a RG technique to ob-
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tain the € expansion for various critical exponents up to
order €. Parisi and Sourlas [8] further applied this model
to show that the critical exponents of animals in D di-
mensions are related to the exponents of the Lee-Yang
edge singularity of the Ising model in an imaginary field
in D —2 dimensions. They found an exact result for v in
three dimensions when the excluded volume interaction
is present, v(D =3)=1. However, this formalism lacks a
direct mechanism for the calculation of the universal
properties of the polymer problem, which do not have
direct counterparts in the magnetic systems. The third
formalism is due to an earlier suggestion by de Gennes
[5], who directly examined the end-to-end distribution
function in terms of graph representations of the integral.
This method is quite useful because it has the advantage
of explicitly maintaining the desired physical variables in
the expressions. de Gennes found the mean-field value of
v: vmp=+, which is consistent with the value obtained
by Zimm and Stockmayer [4]. In this paper, we present
an approach of conformation-space RG theory based on
de Gennes’s original formalism, by considering the effect
of the excluded volume interaction. Our main goals are
(i) to find the appropriate scaling relations between vari-
ous properties of interest and (ii) to formulate an ap-
proach for calculating the conformational properties of
annealed branched polymers in the dilute limit.

The idea of constructing the conformation-space RG
idea for linear polymers was first introduced by de
Gennes [16]. Freed and co-workers [3,17] considered the
polymer-chain conformation-space formalism for linear
polymers with the theory represented in terms of the un-
perturbed Gaussian polymer distribution functions and
the excluded volume interaction. This method has prov-
en to be fruitful since it enables a systematic calculation
of the physical quantities of linear polymers [3,17,18].
However, in the case of branched polymers, the unper-
turbed distribution function is non-Gaussian [5]. The
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end-to-end distribution functions with specified internal
points differ from the external end-to-end ones due to the
branching. This problem is solved in this paper by taking
possible branchings at the internal segments into con-
sideration.

A number of issues are not addressed in this paper.
First, we consider trifunctional branching units only, i.e.,
the branching points can have one (ends), two (linear
parts), or three branches. We believe that our method
can be extended for the consideration of f-functional
branching units [4,7], which are not considered here.
Second, we assume a model for randomly branched poly-
mers without ring structures. Lubensky and Isaacson [7]
noted that randomly branched polymers with ring struc-
tures belong to the same universality class as the ones
without ring structures. Third, as in most of the previous
works [4,5,7,15,19-21], we consider only the situation
when the branching points are annealed, i.e., when the
statistical distribution of the branching points is deter-
mined by maintaining the activity of the branching points
constant. Recently, a Flory-like argument [11] and a
Monte Carlo simulation [22] have demonstrated the pos-
sibility of the existence of another universality class for
randomly branched polymers: those with quenched
branching structures. As will be discussed elsewhere
[23], our approach presented in this paper can be easily
modified by using the replica method to describe
quenched randomly branched polymers [12]. Finally, we
are mainly interested in discussing the mean-square ra-
dius of gyration, the complete partition function, and the
related critical exponents. Other physical quantities,
such as elasticity, defined in Ref. [21], are not considered.

The plan of the paper is as follows. Section II de-
scribes the microscopic model. As the zeroth-order of
our perturbation scheme, de Gennes’ theory [5] for the
end-to-end distribution function is also briefly reviewed.
In Sec. III the correlation functions, with interior points
specified, are explained and calculated; the results are
then used to calculate the partition function, the mean-
square radius of gyration, and the second virial coefficient
to first order in excluded volume. The ’t Hooft-Veltman
dimensional regularization approach [24] is used for these
calculations. In Sec. IV we present a general considera-
tion of the conformation-space RG scheme and construct
the RG equation for the mean-square radius of gyration.
The exponents of the mean-square radius of gyration v
and of the number of configurations 0 are evaluated to
order €. Section V is devoted to the discussion. In Ap-
pendix A we discuss a comparison between the analytic
mean-field results for the mean-square radius of gyration
based on a direct calculation and the Kramers theorem
[25]. Appendix B lists the correlation functions used in
this paper. Appendix C shows the procedure for obtain-
ing the critical dimensionality D, =8 from the current
model.

II. BASIC FORMALISM
A. Microscopic model

We consider a branched polymer of n branching points
that divide the polymer into 2xn + 1 linear portions, which
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are separated by two tribranching points, or a tribranch-
ing point and an end (see Fig. 1). The polymer is as-
sumed to have total contour length L and Kuhn length /,
moving in a D-dimensional hyperspace of volume V. For
each linear portion labeled by « (k=1,2,...,2n +1), the
statistical weight factor is chosen to obey the Gaussian
distribution

1 oL ?

“Zfo dtK

For convenience, here and hereinafter we utilize the vari-
able r(z,)=(2D /I)'/?R(t,), where R(t,) designates the
spatial position of the polymer segment at the contour
position ¢, of the «th portion with length L,. The com-
plete canonical statistical distribution function can then
be written as

dr(t,)
dt,

__ 1
gK[r]—(—4—1T—)D7exp (2.1)

2n+1
Ps(n:Lr[r])= H gK[r]exp(—v[r]) »

k=1

(2.2)

where v [r] represents the excluded volume interaction
potential

2n+1 2n+1
v[r]=zu,

k=1 Kk'=1

L" L“' ’ ’
fo dtxfo ditl8[r(t,)—r(tl)] .

(2.3

The constant u, in Eq. (2.3) is the bare, i.e., unrenormal-
ized, excluded volume parameter. The subscript s in Eq.
(2.2) denotes the fact that the distribution function
P.(n,L,[r]) explicitly depends on the branching structure
of the molecule.

For annealed randomly branched molecules, the num-
ber of tribranching points n is a fluctuating physical
quantity. Instead, it is more natural to directly use the
activity of the trifunctional unit A2 as a variable of the
theory. Furthermore, because of the randomness of the
branching structures, we may assume that all different

FIG. 1. Schematic diagram to illustrate a typical structure of
a branched polymer. We consider trifunctional branching
points only. In addition, the possibility of forming rings is ig-
nored.
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branching structures occur in the same frequency. Thus
we consider the grand canonical distribution

P(A,L,[r])=3A»P(n,L,[1]),

s,n

(2.4)

where the summation goes over all possible branching
structures. The calculation presented in this article is
based on the distribution function given in Eq. (2.4).

The introduction of the variable r(¢) is similar to the
procedure introduced in studying linear polymers [3].
Taking the dimension of the contour length L as the fun-
damental dimension of the theory A,

[L]=A, (2.5)

one can determine the dimensions of all physical quanti-
ties involved in this paper. Since v[r] in Eq. (2.2) is di-
mensionless, we may deduce

[r]=A12, (2.6)
[ug]=AP7272, 2.7)
[A]=A"1. (2.8)
Note that the combinations [L/A]=A? and

[ugA2]=A"¢2, where e=8—D.

The integral in Eq. (2.3) should be supplemented by the
restriction that prohibits the contour distance of the two
considered contour points from becoming smaller than a
cutoff length a, which has the magnitude of the Kuhn
length. Such a restriction eliminates possible singularities
arising from self-excluded volume interactions of mono-
mer units. As has been stressed by Freed [3] in the con-
text of linear polymer chains, a is not necessarily the true
microscopic minimum length and maybe thought of as an
effective size of a real system.

B. de Gennes’ end-to-end distribution function

The theory, deduced when the excluded volume in-
teraction is ignored, forms the basis for the perturbation
scheme that will be established later. For completeness,
we briefly review de Gennes’ derivation for the end-to-
end distribution function [5], which describes the proba-
bility of finding any two of the ends of the molecule being

at the points with spatial coordinates r and r’,
Go(r,r’;L)= ['D[r]P(A,L,[1]) . (2.9)
T

Diagrammatically represented by the propagators in Fig.
2, G, can be evaluated according to the basic definition in
Eq. 2.4),

Go(r,r';L)=g(r,1';L)

+A2f fdrldrz S g(r,r,L —L,)
LyL,

XGo(rl,r',Ll _Lz)
XGo(rl,rz;Lz) )
(2.10)
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FIG. 2. Diagrammatic construction for the end-to-end distri-
bution function, which is represented by the thick lines. The
linear parts of the polymer with no branching point, which can
be described by the Gaussian distribution, are represented by
the thin lines.

where g denotes a Gaussian distribution corresponding to
the linear part of the polymer [1]. The introduction of
the Fourier and Laplace transformations

éo(k;p)=f~(‘—;%‘5exp[ik-(r—r')]

X fo“’dL exp(—pL)Gy(r,r';L)  (2.11)
leads to
Go(k;p)=g(k;p)+ A% (k;p)Gy(k;p)Go(0;p) , (2.12)
where
1
gk;p)= 2.13
g(k;p) C4p 2.13)

is the Gaussian distribution in the Fourier and Laplace
representations. The solution of Eq. (2.12) is [5]

1
K2 +[p +(p?—4AH)'2]/2

Based on this solution, the grand partition function
Go(L) can be evaluated

Gok;p)=

(2.14)

I,(2AL)
AL’

where L7 ! denotes the inverse Laplace transformation

and I,,(x) the mth-order modified Bessel function of the

first kind. The averaged number of branched points 7
can then be deduced

Go(L)=L;'G0,p)= 2.15)

i=A?

InGy(L)=AL, AL>>1. (2.16)

9A?
Following the Kramers theorem [25] and its generaliza-
tion, de Gennes [5] calculated the mean-square radius of
gyration S? and Daoud and Joanny [21] calculated s%
However, the mean-square radius of gyration can also be
calculated based on the very definition of the scattering
structure factor. We give a more detailed discussion of
the derivation in Appendix A. Making use of the large-z
expansion of the modified Bessel function 7,,(z), we ob-
tain the large-AL behavior of sz

§7=1D | 7L N 2.17)
2 | A '
The mean-field critical exponent is then
YMF= % - (2.18)
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III. PERTURBATION CALCULATION

A. Correlation function and perturbation expansion

Due to the possibility of branching, the excluded
volume problem of randomly branched polymers is more
complicated than that of linear polymers. For linear po-
lymers, the perturbation expansion in %, can be formulat-
ed by implementing the standard Feynman diagram tech-
nique since the two-point correlation function is simply
Gaussian. For branched polymers, de Gennes’ unper-
turbed end-to-end distribution function is non-Gaussian
and possible branching at an interior segment must be

G, (r,r';r;L)=Yg(r,r;;L)g(r,r';L —L )
L

1
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taken into account.

In order to carry out the perturbation expansion in u
of the physical properties of interest, we must introduce
the correlation functions G,(r,r’;r,r5,...,15L),
1=0,1,2,..., for randomly branched polymers when
the / internal points have the positions denoted by the
vectors r,r,,...,r; and the two external ends have the
positions denoted by the vectors r and r’. The function
G, can be evaluated based on the basic definition of the
probability function in Eq. (2.4).

To illustrate how G is calculated, we give here the ex-
ample of calculating G(r,r’;r;L). According to the dis-
tribution function, G, can be written as

+A2f fdr’ldr'z > (Sg(r,r;Ly)g(r,r;L —L,—L;3)Go(ry,r'; L, —L,)g(r},15;L,)

Li,Ly | Ls

+g(r,ry;L —L )G (r},r';r;Ly —L,)Gy(r},15;L,)

+g(r,rj;L —L,)Gy(r},r'; L, —L,)G(r},ty;r;L,)

A convenient way of understanding the various terms in
Eq. (3.1) is to associate each term with a corresponding
graph [Fig. 3(a)]. The thick line in Fig. 3(a) with the inte-
rior point specified by a diamond represents G,. It is ob-
vious that the first three graphs can be combined to sim-
plify the graph by making use of Fig. 2 inasmuch as the
corresponding terms in Eq. (3.1) can be combined into a
simple form according to Eq. (2.10). We then have a
more compact form of G

—-o—:—o——{-—oJ—-{———l—o——{——L—

()

FIG. 3. Diagrammatic representation for G,(r,r’;r;;L) in (a)
Eq. (3.1) and (b) Eq. (3.2). The filled diamond denotes possible
branching at an interior point and the filled circle denotes a
nonbranched interior point. The two sets of graphs are
equivalent.

(3.1)

G(r,r';r;L)=3 Gy(r,r;L —L)Gy(r,r';L,)
LI

+A%S ffdr'ldr'zGo(r,r’,;L —L,)
L,L,

X Gylry,r'; L —L,)

X G, (ry,ryr;L,) , (3.2)

which can be represented diagrammatically by Fig. 3(b).
In view of the graph representation, we may say that the
second term in the expression (3.2) for G, comes from the
branching that may occur at r;. The Fourier and Laplace
transformation of Eq. (3.2) becomes

G (ky,kp;k3;p) =[Gy (ky;p)Go(ky;p)
+A260(k1;p)60(k2;1’)
X G(0,ky;ky;p)1(2)P

X 8(k; +k,+ks) . (3.3)

FIG. 4. Diagrammatic representation for G,(r,r’;r,,r,;L).
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FIG. 5. Diagrammatic representation for G;(r,r’;r,r,,r3;L).

The solution of Eq. (3.3) for the function G, is found to
be

G,(k;,ky;k3;p)
_ Gy(ky;p)Go(ky;p)(2m)P8(k, +k,y+k;3)
I_AZG()(k:%;P)Go(O;p) )

(3.4)

We now proceed to the evaluation of the expressions
for the correlation functions G, (I =2,3,4) that are need-
ed to carry out the perturbation calculation of various
physical properties of interest. The derivation can be
done in the same way. The results for G,, G, and G, are
represented graphically by Figs. 4, 5, and 6, respectively.
We observe that the graphs associated with
G,(r,r';ry,15,...,1;;L) can be categorized into three
groups: (i) for a given /, a graph that represents GG, _,
can be deduced (see the first graphs in Figs. 4-6); (ii)
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FIG. 6. Diagrammatic
G4(r,r’;r|,r2,r3,r4;L).

representation for

connecting r and r' may be considered (see the last
graphs in Figs. 4-6). Appendix B contains the algebraic
expressions for G,, G3, and G,. It is worthwhile to note
that these expressions reduce to the corresponding corre-
lation functions of a linear Gaussian chain in the limiting
case of A=0 [3].

To conclude this section, we give the example of
evaluating the partition function, which can be expressed
as an asymptotic expansion in powers of the excluded
volume parameter u,. We obtain

different ways of arranging G11 and G,2 for the two arms Gu(L)=GO(L)+ ® Gim(L) (3.5)
of the branched graphs (I, +1,=1,1,=1,1,21) must be B B m2=1 B ’ )
considered; and finally (iii) a graph represents the possible
choice of (ry,r,,...,r;) indirectly related to the path  with
J
( —Ug )m , ,
G,‘,’“’(L)=mfd1’rfd”r JdPr, - [dPry, Gy (r,0s1y,1, . . Eys L)
X&(ry—ry) - 8(ry, 1~ Topm) » (3.6)
where the subscript B denotes bare function. In the Fourier-Laplace space, Eq. (3.5) becomes
Gy(p)=GY(p)+ I Gy™p), (3.7
m=1
with
~ (—up)™ dPk, d’k,, _
GiMp)= = ,0;ky, —ky, . . ., Kk, —k,5p) 3.8
5 (P) 2(2m —2)1 f (2m)P f (27)P G2 (0 1 1 m> —Kpm3P) (3.8)

The correlation function in the integrand can be found in
Appendix B.

B. Dimensional regularization

As mentioned earlier, the microscopic model in Sec.
ITIA should be restricted to describing randomly
branched polymers interacting at a distance greater than
the microscopic length a. Because of the particular func-
tional form of the Gaussian distribution of the linear part

of the polymer, the present model may produce diverging
singularities in the limit of ¢ —0 when various physical
quantities are calculated. These divergences depend on
the value of @ and also on the regularization scheme, i.e.,
the form that is used to impose the cutoff (hard cutoff,
smooth cutoff, etc.).

In general, the integral appearing in the model con-
tains singularities when D =4,6,8,... is approached.
The divergences at D =4 and 6, however, can be ab-
sorbed by redefining the basic parameters perturbatively



3948

in the model, as demonstrated in Appendix C. The pa-
rameters highly depend on the microscopic details of the
model. The divergences at the critical dimension D, =8,
however, must be dealt with by introducing a RG trans-
formation. It is this dimensionality that interests us the
most: the universal scaling behavior and critical ex-
ponent are closely associated with D, =8

The dimensional regularization scheme, suggested by
’t Hooft and Veltman [24] and subsequently applied to
the RG analyses of many models for critical systems, is a
powerful technique to extract the singularities near
D_,=8. The other microscopic details relating to the
divergences at D =4 and 6 are simply suppressed. To use
the dimensional regularization, one first formally calcu-
lates the integral at low dimensions and then expands the
resulting expression near the critical dimension. We
adopt the dimensional regularization scheme in this
work.

C. Partition function

The first-order contribution in u, to Gy is related to
G,
Ug d’k
201 J (o yp SO0 TR
Diagrammatically, it can be represented by the one-loop
graph in Fig. 7, where the dashed curve describes the
contraction due to the d-function-type interaction. For
D =4 the integral in Eq. (3.9) is formally divergent due to
the neglect of an ultraviolet cutoff in Eq. (2.3). To extract
the singular portion, we use the dimensional regulariza-
tion scheme

Glp)=— (3.9)

de 1 '(m —D/2) D/2—
= t m. (3.10)
f Q2mP (k4™ (4m)P*T(m)
We then have
u,I'(2—D /2)

Gél)(P)='— (p2_4A2)D/2—3+ cee

(4m)P2T(2)
3.11)

where I'(m) is the Gamma function. Here we retain only
the term that contributes most significantly in L when
Eq. (3.11) is transformed back to the L space. A direct
inverse Laplace transform of Eq. (3.11) yields the parti-
tion function at large L

—+_(2;_

FIG. 7. Expansion for the partition function in %, up to one
loop. The dashed line represents the excluded volume interac-
tion, which can be characterized by the interaction parameter
ug, between the two points specified by the diamonds.
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Gy(L) . uoAT(1—D/4) [ 16720 |* 612
GO(L) 2(4m)* A '
Note that the combination of the parameters
/4
_ uoA’ | 16°L | 313
z= (4 A (3.13)

appears in Eq. (3.12). Expanding Eq. (3.12) to order €°
yields

Gp(L)
GP(L)

167*L

1—y+In
YT

1+5€“— ,  (3.14)

€
1+4

where vy is the Euler’s constant and u is the dimensionless
coupling constant defined by

u0A2k€/2
u =—W . (3.15)
T

D. Second virial coefficient

To calculate the second virial coefficient, it is necessary
to consider the interaction between two branched poly-
mers. The bare second virial coefficient 4,5 is given by

_ derlderzder'lder’zgc(rl,rz,r’l,r'z)

A
2B G}z}

’

(3.16)

where G, is the connected, two-chain correlation func-
tion, when polymer 1 has its ends at r; and r] and poly-
mer 2 at r, and r5.

Now, expanding Eq. (3.16) in powers of u,, we are able
to express A,p in terms of the correlation functions
defined in Sec. III A. We may use the diagrammatic rep-
resentation for the involved integral as in Fig. 8, which is
self-explanatory. The first-order diagram shown in Fig. 8
is associated with the correlation function G,, which' in
the Fourier-Laplace space is given by

9" =u,G(0,0;0;p)G,(0,0;0;p") . (3.17)

Performing the inverse Laplace transformation yields the

first-order contribution at large L in the L space
V=4 LYGPAL)T? . (3.18)

The second diagram appearing in Fig. 8 involves the cal-
culation of the integral containing G,. Analytically, we

FIG. 8. Expansion for the connected, two-chain correlation
function in u, up to one loop, which is used to evaluate the
second virial coefficient.
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have
uy Pk
on | oo
X G,(0,0;k, —k;p’) .

goa—_ G,(0,0;k, —k;p)

(3.19)

Carrying out the integral and performing the inverse La-
place transformation yields

2u3L2A?
9= = amyte LOF LT
2 €/4
16m°L | 11106, (3.20)

Note that terms of order [G{(L)]L'*¢/* or lower are
negligible at large L. The last two diagrams appearing in
Fig. 8 are associated with G, and G;. The computation
of the integral represented by these two graphs proceeds
in the same manner. This leads to

27 242
(28) 4ugl A
()8 =

(47)%

2 €/4
[GO(L)T? i‘%i [1+0(e)] .

(3.21)

Now, grouping the different graphs in Fig. 8, we obtain
the second virial coefficient up to order u3
€/4

2
16m°L | 11 4+0(e)]

AZA

2u

Ayp=uoL?
2B Up 3e

1_

+0(u3) .

(3.22)

E. Mean square radius of gyration

The bare mean-square radius of gyration can be evalu-
ated through &(k,L), the coherent-scattering structure
factor,

D
Zaze?B(k,L)/E)k,-2
aT__ Li=1
S 2 8p(k,L) ’ (3:23)
k=0
where 8$(k, L) is defined as
$p(k,L)
1 L, Le _ ,
=<Z§fo dr, [ "dtiexplik[rlt,) (1 )]})
(3.24)

with { ) denoting the average with respect to the distri-
bution given by Eq. (2.4). We can now expand &5 in
terms of powers of u,. The resulting expression may be
easily understood by using Fig. 9.

The zeroth-order term of 5 (k,L) is directly related to
G, in the k space (see Fig. 9)

1

S(0) —
§p (k,p)= 2101

G,(0,0;k, —k;p) . (3.25)

3949

+ l’ Ny + 77N +2 77N +2 TN

FIG. 9. Expansion for the scattering structure factor in u, up
to one loop, which is used to calculate the mean square radius of
gyration.

’1:2_}% ing derivatives according to Eq. (3.23), we obtain
=ID(mwL /A)"*/2.

The first-order contribution is related to G4, whose ex-
pression appears in Appendix B,

Sy (k,p)=— f 2P _,(0,0;k, —k, k', —K';p) .

2')2
(3.26)

The calculation of 55;” is more involved, but in the same
manner as the calculation for other one-loop integral.
We obtain, for large L, the expression for e%”, which

leads to
o (72 '?]. | au (16220 |
SI=2 |2 qu | 2o 1—0.108
BT A l 3¢ | A2A ( <)
+0(uj3) . (3.27)

F. Summary

In this section, we obtained the first-order corrections -
to the mean-field behavior of the partition function G (L),
the second virial coefficient 4,, and the mean-square ra-
dius of gyration S?, in the asymptotic expansion in
powers of u,, under the dimensional regularization
scheme. The resulting expressions, Egs. (3.17), (3.22),
and (3.27), show that the appropriate, naturally produced
scaling parameter is

_ qu2
(4m)*

/4
1672L |°

A

(3.28)

Although this scaling parameter is found through the
procedure of dimensional regularization, we believe a
similar definition can be made when the model is treated
with an explicit cutoff for small a. A similar situation is
found for the problem of linear polymers, where the basic
scaling parameter appears to have the same form in both
the expression deduced from the dimensional regulariza-
tion scheme [3] and the perturbation expression when
a~1 is explicitly introduced [26]. This consideration
prompted us to rescale the Monte Carlo simulation data
[22] of S? obtained through an off-lattice algorithm, in
which the parameter u, can vary, according to the z pa-
rameter defined in Eq. (3.28). We have found that the
Monte Carlo data indeed scale as expected for large AL.

IV. RENORMALIZATION GROUP CALCULATION

A. Renormalization

According to the basic assumption of the RG ap-
proach to critical phenomena, the microscopic details,
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characterized by the value of the microscopic length a,
are irrelevant to the universal behavior that occurs at
macroscopic scale. The existence of the invariance in
performing the RG transformation is the essential mech-
anism that produces the universal behavior.

The microscopic parameters contained in our model
are the contour length L, the excluded volume u,, and
the tribranching activity A% The explicit calculations of
the mean-square radius and the second virial coefficient,
given in Sec. III, have shown that at large L they are all
functions of the following two parameters M and u
defined by

L

M==

A 4.1)

and
u 01\2}\5/2
B (4m)*

Though we only performed the calculation up to one-
loop order, we assume that M and u are the two funda-
mental microscopic parameters in our model.

Consider a certain bare quantity Fz(M,u,a) as a func-
tion of M,u, and the microscopic length a. The singulari-
ties that show up in Fyz may be removed by defining the
corresponding normalized quantities, so that the renor-
malized

F,=F.(M,,u,)

(4.2)

4.3)

is independent of a. The normalized variables are related
to the unnormalized ones in a linear form

M,=ZM , (4.4)
u,=Z; 'u, (4.5)
F,=Z7'F, (4.6)

where the normalization coefficients Z,,, Z,, and Z are
assumed to be functions of u,.

In Sec. III we consider a perturbation method to evalu-
ate physical quantities by using the dimensional regulari-
zation scheme [24]. In general, the quantity Fy may be
expressed by a series in powers of the dimensionless
quantities M €* and €,

=] o0

Fp= 3

m=0 n

Fo(uM</%)me" . 4.7)
Note that the second summation in Eq. (4.7) may contain
negative powers of n. In writing down Eq. (4.7), we made
the assumption that high-order loop graphs contribute to
Fy in the similar way as the one-loop result.

Writing Z,,, Z,, and Z in the Taylor-expansion forms

Zy=1+ 3 a,u”,

(4.8)
m=1
Z,=1+ 3 b,u™, 4.9)
m=1
Z=1+ S d,u", (4.10)

m=1
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we can now use the perturbation series of G (L), 572_, and
A, to determine the coefficients a,,,b,,, ..., to each or-
der in u,. Since there are many ways of keeping the re-
normalized functions finite, there are different ways of
choosing the constant Z,,;, Z,, and Z. Here, in order to
eliminate the singularities in €, a minimal subtraction of
dimensional poles is assumed. The resulting F is well
defined at €=0 in the series

F=3 3 F,,(uMf*)me" .

m=0 n=0

(4.11)

Since u, turns out to be of order € in the macroscopic
limit, to determine quantities F to order €, we only need
to calculate the first-order coefficients a,,b,, . . ..

All the necessary terms for renormalizing are now
available to first order in u. The singularities 1/€ in the
bare quantities [see Egs. (3.17), (3.22), and (3.27)] are re-
quired to be absorbed through Egs. (4.3), (4.5), and (4.6).
To the first order in u, we obtain a; =8/3¢, b; =6/¢, and
d;=2/€ and thus

8u,
Zy=1+ +0(u}), 4.12)
3e
6u, )
Z,=1+—+0w}), 4.13)
and
2u,
Z=1+ +0(u?). 4.14)

B. RG equation

As an example, we consider the mean-square radius of
gyration §7, which is found to be a function of M, u, and

€:
S3=S2(M,u,e) . 4.15)

The corresponding macroscopic gyration S? should be
equal to Sg,

SAM,,u,,\€)=S3(M,u,e) (4.16)
or simply
SHAM,,u,, A €)=SHZ;;'M,,Z,u,,€) . 4.17)

On the other hand, using the system of units given by
Egs. (2.5)-(2.8), pure dimensional analysis yields

M, A
1ur) _16
s

S7=5S7 (4.18)
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for any scaling constant s > 0.
The existence of a renormalized theory and the in-
dependence of S’_g on the macroscopic scale A imply
0
AJSTI%—(M,u,e)=O .
Noting that Z,, and Z, depend on A, we have the RG
equation

(4.19)
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d 0
Aax +pB(u,) +v(u, )M,

9 |&7 _
ou, oM, S“M,,u,,A,e)=0,

(4.20)

where B(u, ) and y(u,) are the normalization functions

Blu,)=A 9

-53:u, ) (4.21)

ru)=A-1nz,, . (4.22)

A

The solution of the RG equation has been extensively

studied before [24]. It gives rise to the asymptotic power

law and thus may be used to determine the critical ex-

ponents. The change of the function S? under a change

of A becomes rather simple in a special case, namely,
when

B*=B(u})=0,

where u,* is the fixed point coupling constant. At the
fixed point u, =u,*, Eq. (4.20) becomes

(4.23)

9 a9 |57 * =
kax +y*M, oM, S4M,,u},\e)=0, (4.24)
with the numerical constant y*
rr=yur). (4.25)

The general solution of Eq. (4.24) at the fixed point is

ST=8% | —,u* e (4.26)
Y
Comparing Egs. (4.26) and (4.18) gives
7'*
SZ=s82 s; % Jur,€e (4.27)
Choosing s to be given by
*
Alr N 4
2 =1, 4.
2 | Y (4.28)
we obtain the scaling law for S2,
ST=M I\ Ny x e | (4.29)

where f is an unknown function to be determined. The
gyration exponent v defined by SZ~L?2” at large L is thus
given according to Eq. (4.29) by

-1
4—2y*

The above derivation of the scaling law does not require
the introduction of the perturbation expansion (3.5), so
that the scaling law follows quite generally from the as-
sumption of the existence of renormalized quantities and
microscopic scale invariance.

Substituting Egs. (4.12) and (4.13) into the definition of
B and v in Eqgs. (4.21) and (4.22) yields

(4.30)

v
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B(u,)=—§-u,—3u,2+0(u,3) 4.31)
and

y(u,)=%u,+0u?) . (4.32)

The fixed point u* is determined from the definition
B*=0,

u,‘=%+0(€2). (4.33)
Introducing (4.33) into (4.32) enables us to obtain
y*=2e+0(€) . 4.34)

The gyration exponent can be obtained from Egs. (4.30)
and (4.34) as

y=

. (4.35)

1+§+0(62)

1
4

After renormalization, the expression for S7? at large M,
can be written as
€/18

167°M,
—— (1—0.007¢) .

AZ
The critical exponent that characterizes the number of

configurations is related to the partition function G (L)
by

G(L)~L'%~L,

S Zl—f‘(ﬂM,)l/z (4.36)

(4.37)

where b is a constant. From Egs. (4.13) and (4.14), we
can also deduce 0 by going through an analysis similar to
that of SZ. We have

(4.38)

V. DISCUSSION

We have developed a direct conformation-space ap-
proach by employing the RG technique to study random-
ly branched polymers. The method developed here
echoes a similar idea in the study of the conformational
properties of linear polymers [3]. The basic ingredients
of the formalism are de Gennes’ unperturbed distribution
function for branched polymers [5], which assumes a
Gaussian distribution for the linear part of the polymer
and a &-function-type interaction between segments in
the branched polymer, which is characterized by the ex-
clude volume u,. Such an approach has the advantages
of explicitly maintaining the desired physical variables in
various expressions and producing the proper scaling re-
lations between various properties. The most important
result is that the mean-square radius of gyration has a
scaling form as
172
L aav-1re i

SZ~
o A

(5.1)

where
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€/4
u0A2

T (4m)*

16m2L
A

(5.2)

Such a scaling relation offers a guideline for the interpre-
tation of experimental data and particularly, recent
Monte Carlo data [22] for S2. In view of the reduction of
A due to the presence of u, (see Appendix C), which is an
unknown function, Eq. (5.1) is not the most convenient
form that can be used. To avoid this problem, we may
use the variable 7 instead of A. In general, the relation

n=A(ugy)L (5.3)

is valid for large AL, despite the correction of A due to
ugy. This can be shown by differentiating the partition
function. Thus we propose to use

STZ_N _1/222(41/—1)/6 , (5.4)
n
with
_won® [ 167222 |
T amL? | ’ 5.9

which should be a more convenient scaling form for prac-
tical use. It is interesting to note that the combination of
the parameters uyL¢* also appears in the result of the
Flory-type argument [11,20]. A similar situation exists in
the theory of linear polymers, for which the Flory argu-
ment [1] yields the appropriate scaling parameter
u, L (4—D)/ 2.

We have also deduced the first-order term in the € ex-
pansion for the critical exponents v and 8. These results
agree with the results of Lubensky and Isaacson [7], al-
though these authors used a completely different ap-
proach. While the difficulties in evaluating the Feynman
diagram for the nm-component ¢ field variable in Luben-
sky and Isaacson’s theory [7] is avoided, our approach
has its own difficulties in deriving the correlation func-
tions G;. The € expansion for v and 6 themselves, howev-
er, is probably less useful in the D =3 case; the parameter
€=8—3=35 is probably too large to be considered as an
expansion parameter.

It is the complication of branching structures that
makes the calculation in this paper more difficult in com-
parison to that for linear polymers, although the pro-
cedures are quite similar. Extending our calculation to
order €? should be straightforward but tedious; one would
need the expression for the end-to-end correlation func-
tion G4 with eight interior points. Such a study is impor-
tant to further confirm our scaling assumption in Egs.
(5.1) and (5.2), which is based on a first-order expansion.
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APPENDIX A: STRUCTURE FACTOR
AND RADIUS OF GYRATION

In this appendix we calculate the mean-square radius
of gyration S* of noninteracting randomly branched po-
lymers. Instead of deriving S? from the Kramers
theorem [25], as has been done before [5], we use the
more basic approach of calculating the structure factor
SO(k; L).

With the substitution of the explicit form of G, in Eq.
(3.25), $1%(k;p) takes the form

200 n)\CF .
(-PSS(;)( )= G(0;p)Gy(k;p) '
[1—A2G2(0;p)][1—A2G(0;p)G o (k;p) 1>
(A1)
At k=0, we have
_ G3(0;p)
$9(0;p)= 05P (A2)

[1—A%G2(0;p)])
Performing the inverse Laplace transformation yields

L

SA0;L)= A 1(2AL), (A3)

where I, is the mth-order modified Bessel function of the
first kind. Comparing with the expression of the parti-
tion function

_ I,(2AL)
G(L)—T , (A4)
we have
L2
S%”(O;L)=7G(L) . (A5)

This result, of course, is consistent with the definition of
§p(k,L), Eq. (3.24).
The numerator of the right-hand side of Eq. (3.23) can
be obtained by using Eq. (A1)
1 2 3*&V(k,p) _ 2G5(0;p)[1+A%G5(0;p)]
D= 3k} k=0 [1—A%G§(0;p)]*

(A6)

Performing the inverse Laplace transformation of Eﬂz‘
(A6) and substituting the result into the expression for S
in Eq. (3.23), we have

1/2

§7— D | 7L

S 2 A f(Q2AL), (A7)
where

I, ,,(2)—=2(2/m2) 21 o(2)+(2/2)1, ()
flz)= 3/2 0 1/2 , (A8)
II(Z)
which has the following asymptotic behavior:
2z/2m)V%/3, z—0
F@=, 20w, (A9)



52 CONFORMATION-SPACE RENORMALIZATION OF RANDOMLY ...

Note that S? is proportional to L'/? at large AL, so that
the mean-field critical exponent vyyg=-=1. This is the same
result as that obtained by Zimm and Stockmayer [4] and
de Gennes [5] before.

However, we are unable to use (A8) to recover exactly
the expression for S? deduced based on the Kramers
theorem [25], as prescribed by de Gennes [5]. From the
Kramers theorem, one would obtain S7 in the same func-
tion form as in Eq. (A7), however, with f (z) replaced by

. 11/2(2)_2(2/7TZ)1/211(Z)
1,(2) )

f'(z) (A10)

G, (ky, ky; k3, kg p)=Go(ky;p)Go(ky;p)Y (k3;p) Y (kg3 p)
X { Go(kl +k3;p)+60(k1+k4;p)

+A’Go(0;p)Go (ks +ky;p)[ Go(ks;p) +Go(kesp) 1Y (k3 +kgp) } (2m)P8(k + Ky +ky +ky)

where

1
1—A%Gy(0;p)Go(k;p)

Y(k;p)=

In particular, in the paper we used
G,(0,0;k, —k;p)=2G2(0;p)G o (k;p) Y (0;p) Y2(k;p) .
For [ =3, we have

G5(0,0;k, —k,0;p)=2G3(0;p)Go(k; p) YX(0;p) Y X(k; p)

X[Go(0;p)Y (0;p)Z (0;p)+ G (0;p)Y (k;p)Z (k;p)+ G (k;p) Y (k;p)Z (k;p)]

where

Z (k;p)=1+A2G,(0;p)G,(k;p) .
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The function f’(z) has the same asymptotic behavior
given by Eq. (A9), but differs from f(z) in the intermedi-
ate region of z.

APPENDIX B: CORRELATION FUNCTION

In this appendix the algebraic expressions for the
(2+10)-point correlation function (/=2,3,4) in the
Fourier-Laplace space, which are used in Sec. III, are
listed.

For [ =2, we have generally

(B1)

(B2)

(B3)

(B4)

(BS)

This formula is used to obtain Eq. (3.22), where the k vectors of the two external ends and one interior point have been

set to zero.
For | =4, we have

G4(0,0;k, —k,q, —q;p)
=2G3(0;p)Y (0;p)YX(k;p)Y2(q;p)

X {2G(0;p)Go(k;p)Go(q;p) Y (0;p)[ Y (k;p)Z2(k;p)+ Y (q;p)Z%(q;p) +2A%G 5 (0;p) Y (0;p)]
+Z(k;p)Z (q;p)[Golk;p)+Go(q;p) 1[Go(k;p) Y (k;p)+Go(q;p) Y (q;p) ]
X[Go(k+q;p)Y (k+q;p)+Go(k—q;p)Y (k—q;p)]

+A2G,(0;p)[Go(k;p)+G(q;p) P [Gi(k+q;p) YAk +q;p)+ G2 (k—q;p) Y2(k—q;p)]} .

This formula is used to obtain Eq. (3.27).

(B6)

APPENDIX C: CRITICAL DIMENSIONALITY

As we have indicated in the discussion of the perturbation theory, the model may be transformed to a field theory
that is solved perturbatively by calculating the various correlation functions. To one-loop order, the end-to-end distri-

bution function G is given by

dPq Golk+q;p)+A’Go(0;p)[Go(q;p)— Golk+q;p)]

G(k;p)=Go(k;p)—uoGi(k;p) [ o

(C1)

[1—A2G3(0;p)][1—A2Go(0;p)Go(q;p) 1P
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Maintaining the dominating term that contributes most
significantly for large L, we have

uoGo(k;p)

G(k;p)=éo<k;p>—m

f dP 1
(27T)D [q2+(p2_4A2)l/2]2
(Cc2)

By mapping the model to a spin field theory, we can
define the two-point vertex function G~ as

G Uk;p)=Gq ' (k;p)

Up

+ (p2_4A2)l/2
d?q 1
X (C3)
f(27T)D [q2+(p2__4A2)1/2]2
The inverse of the susceptibility is given by
—1—aA—1/0n.
X _GO (O,P),
u D
X—1=M+_ﬂ Mfﬁ’ (C4)
2 t (2m)* (q°+1)

where for convenience, we denote ¢t =(p2—4A?)!/2. The
critical dimensionality is determined by examining Eq.
(C4).

When transforming Eq. (C4) back to the L space by us-
ing the inverse Laplace transformation for p, we must
consider an integral path in the complex p plane parallel
to the imaginary axis and on the right-hand side of the
line defined by p =2A. In particular, the large-L
behavior of ¥~ ! mainly comes from the part of the in-
tegral path close to the point (2A,0). The straight line
defined by p=2A produces the exponential factor
exp(2AL) as shown by explicit calculations [see Eq.
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(3.12)]. Note that Daoud and Joanny [21] pointed out
that a similar propagator, valid for large L, can be used
in a similar context and that Parisi and Sourlas [8] con-
sidered a propagator that produces the same singularity
structure.

The integral in Eq. (C4), however, is ill defined; an
upper cutoff of order 1/a must be imposed to prevent ul-
traviolet divergences appearing at D =4,6,8,.... Fur-
thermore, when the ““critical point” ¢ =0 is approached,
x ! does not approach the unperturbed linear depen-
dence on ¢, shown in Eq. (C4) by the first term. Defining
shifts for the parameters p and A,

bq 1

P P 4 OI 2 )D 6 ’ (CS)

_ 1 Puo

A=A——2 ;L——— , (C6
2A (2m)P (277')D o

we may write

_Pt(p —4A2)‘/2+3u d®q 1
X of f (2,”.)D (q2+t)2q4

1
(zm“ (q*+1)%q°

We note from Eq. (C7) that ¥ ~! remains finite in the limit
of the ultraviolet cutoff 1/a becoming infinite, provided
D < 8. This implies that the upper critical dimension of
the model is D, =8. We also note that the parameters p
and A are shifted down from their original values. This
shift depends highly on the cutoff 1/a, as well as the
method of implementing the cutoff. The ultraviolet
divergences in the original integral [Eq. (C4)] at D =4
and 6 are absorbed into the definitions of the parameters
p and A. Finally, we note that the integral in Eq. (C7)
still contains a singularity when D_.=8 is approached.
This singularity must be removed by using the renormal-
ization group scheme discussed in the text.
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